

Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022

Question Paper Log Number P66652A

Publications Code WST01_01_2201_MS

All the material in this publication is copyright

© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question	Sahama	Marks
Number	Scheme	Marks

1. (a)	$P(C') = \frac{103}{120}$ oe awrt 0.858	B1	(1)
(b)	$P(A \cap B \cap C') = 0$	B1	(1)
(c)	$P(A \cup B \cup C') = \frac{9+3+2+5+1+93}{120} \text{ or } P(A \cup B \cup C') = 1 - \frac{7}{120}$	M1	
	$=rac{113}{120}$ oe awrt 0.942	A1	(2)
(d)	P(At most 1) = P(0 or 1) = $\frac{93+9+7+1}{120}$ or $\frac{120-2-5-3}{120}$	M1	
	$= \frac{110}{120} \text{ oe} $ awrt 0.917	A1	(2)
(e)	$P(A \mid \text{At most 1}) = \frac{9/120}{110/120}$	M1	
	$= \frac{9}{110} \text{ oe} \qquad \text{awrt } 0.0818$ $\left[P(X=0) = \frac{93}{120} \right] P(X=1) = \frac{17}{120} P(X=2) = \frac{8}{120} P(X=3) = \frac{2}{120}$	A1	(2)
(f)		M1	
	$E(X) = \left[\frac{93}{120} \times 0\right] + \frac{17}{120} \times 1 + \frac{8}{120} \times 2 + \frac{2}{120} \times 3$	M1	
	$=\frac{13}{40}$ or 0.325 oe	A1 ((3)
	Notes	[11	1]
(a)	B1 (allow awrt 0.858)		
(b) (c)	B1 cao condone $0/120$ but do not allow other denominators M1 for either correct expression for $P(A \cup B \cup C')$		
(d)	A1 o.e. (allow awrt 0.942) M1 correct expression		
	11		
	A1 $\frac{11}{12}$ o.e. (allow awrt 0.917)		
(e)	A1 $\frac{11}{12}$ o.e. (allow awrt 0.917) M1 follow through their part (d) if num < denom eg $\frac{m/120}{"110/120"}$ or if the fraction in (d) h	ıas	
(e)	M1 follow through their part (d) if num < denom eg $\frac{m/120}{"110/120"}$ or if the fraction in (d) has denominator of 120 $\frac{m}{"$ their 110" where 0 < m < their 110 Allow $\frac{n}{120-3-2-5}$ or $\frac{n}{110}$		
(e)	M1 follow through their part (d) if num < denom eg $\frac{m/120}{"110/120"}$ or if the fraction in (d) has denominator of 120 $\frac{m}{"$ their 110" where 0 < m < their 110 Allow $\frac{n}{120-3-2-5}$ or $\frac{n}{110}$ 0 < n < 110		
(e) (f)	M1 follow through their part (d) if num < denom eg $\frac{m/120}{"110/120"}$ or if the fraction in (d) has denominator of 120 $\frac{m}{"$ their 110" where 0 < m < their 110 Allow $\frac{n}{120-3-2-5}$ or $\frac{n}{110}$	where	
	M1 follow through their part (d) if num < denom eg $\frac{m/120}{"110/120"}$ or if the fraction in (d) have denominator of 120 $\frac{m}{"$ their 110" where $0 < m <$ their 110 Allow $\frac{n}{120 - 3 - 2 - 5}$ or $\frac{n}{110}$ $0 < n < 110$ A1 o.e. (allow awrt 0.0818) 1st M1 for the probability distribution of X (condone missing $P(X = 0)$) awrt 0.14 awrt 0.06 awrt 0.017 May be implied by a correct expression for $E(X)$. At least 2 correct must be associated as $\frac{m}{110} = \frac{m}{110} = \frac{m}{$	where	
	M1 follow through their part (d) if num < denom eg $\frac{m/120}{"110/120"}$ or if the fraction in (d) have denominator of 120 $\frac{m}{"$ their 110" where $0 < m <$ their 110 Allow $\frac{n}{120 - 3 - 2 - 5}$ or $\frac{n}{110}$ 0 < $n <$ 110 A1 o.e. (allow awrt 0.0818) 1st M1 for the probability distribution of X (condone missing $P(X = 0)$) awrt 0.14 awrt 0.06 awrt 0.017 May be implied by a correct expression for $E(X)$. At least 2 correct must be assowith the correct x value 2^{nd} M1 correct follow through expression for $E(X)$ ft their probabilities and X values A1 Dep on both previous method marks being awarded. Working must be checked.	where 7 and ociated	

Question	Scheme	Monks
Number	Scheme	Marks

2. (a)	$S_{dp} = 5240.8 - \frac{1029 \times 50.8}{10} [= 13.48]$		
	$r = \frac{'13.48'}{\sqrt{344.9 \times 0.576}}$	M1	
	= 0.9563834526 awrt <u>0.956</u>	A1	(3)
(b)(i)	w = 50 - p	B1	
(ii)	_1	B1	
			(2)
(c)	-0.956	B1ft	
			(1)
		[6]	
	Notes		
(a)	$1^{\rm st}$ M1 correct expression for S_{dp}		
	2^{nd} M1 valid attempt at r with their S_{dp} not equal to 5240.8 and the correct denominator		
	A1 awrt 0.956		
(b)(i)	B1 allow equivalent rearrangements		
(ii)	B1 – 1 cao		
(c)	B1ft follow through $-1 \times \text{their}(a)$ providing $-1 < \text{their}(a) < 1$		

Question	Schama	Monks
Number	Scheme	Marks

3. (a)			B1	
	"125" + 1.5 × ("125" – "116") or "125" + 1	1.5 × (9)	M1	
	Outlier is greater than 138.5, so $c = 9*$		A1*cso	(2)
(b)	$\overline{x} = \frac{-96}{24} [= -4]$ $\overline{d} = '\overline{x}' + 125$	$\sum_{d=125 \times 24 - 96[=2904]} d = \frac{"2904"}{24}$	M1	(3)
	4 1 2 1, 125		M1	
	a = x + 123			
		$\overline{d} = 121$	A1	(3)
	1206			(3)
(c)	$\left[\sigma_x = \sigma_d\right] = \sqrt{\frac{1306}{24}}$		M1	
	V 24	$[\sigma_d] = 7.3767$ awrt <u>7.38</u>	A1	
		To d 1 1 10 10 1 m and 1 10 10 10 10 10 10 10 10 10 10 10 10 1		(2)
(d)	$[P(D>118 X<0)] = \frac{P(118 < D < 125)}{P(D<125)} \text{of}$ $= \frac{5}{14}$	r $\frac{P(-7 < X < 0)}{P(X < 0)}$ or $\frac{\frac{5}{24}}{\frac{14}{24}}$	M1	
	$=\frac{5}{14}$		A1	
				(2)
			[10]	
(a)	B1 both values correct. Both values must	Notes be seen either in the calculation or separatel	y They are	not
(a)	implied by the IQR = 9	to e seen entire in the calculation of separater	y. They are	not
		es. May be implied by 138.5 if B1 awarded		
	A1*cso for 138.5 and conclusion $c = 9$ (do not accept $c = 139$) with no errors. Answer is given so			
		to her were pro- 10%) with he different line were	r is given so	0
	working must be shown.		r is given so	0
(b)	working must be shown. 1st M1 for correct expression for \overline{x}	1 st M1 for correct expression for ∑	-	0
(b)	1 st M1 for correct expression for \overline{x}	1 st M1 for correct expression for ∑	[d	
(b)			[d	
(b)	1 st M1 for correct expression for \overline{x} 2 nd M1 use of $\overline{d} = '\overline{x}' + 125$	1 st M1 for correct expression for \sum 2 nd M1 use of " $\sum d$ " ÷ 24 must be of	[d	
(b)	1st M1 for correct expression for \overline{x} 2nd M1 use of $\overline{d} = '\overline{x}' + 125$ A1 121	1 st M1 for correct expression for \sum 2 nd M1 use of " $\sum d$ " ÷ 24 must be a sum	[d	
(b)	1^{st} M1 for correct expression for \overline{x} 2^{nd} M1 use of $\overline{d} = '\overline{x}' + 125$ A1 121 NB condone no labelling or incorrect label	1 st M1 for correct expression for \sum 2 nd M1 use of " $\sum d$ " ÷ 24 must be a sum	[d	
(b)	1st M1 for correct expression for \overline{x} 2nd M1 use of $\overline{d} = '\overline{x}' + 125$ A1 121	1 st M1 for correct expression for \sum 2 nd M1 use of " $\sum d$ " ÷ 24 must be a sum	[d	
	1^{st} M1 for correct expression for \overline{x} 2^{nd} M1 use of $\overline{d} = '\overline{x}' + 125$ A1 121 NB condone no labelling or incorrect label	1 st M1 for correct expression for \sum 2 nd M1 use of " $\sum d$ " ÷ 24 must be a sum	[d	
	1st M1 for correct expression for \overline{x} 2nd M1 use of $\overline{d} = '\overline{x}' + 125$ A1 121 NB condone no labelling or incorrect label M1 correct expression $\sqrt{\frac{1306}{24}}$	1 st M1 for correct expression for \sum 2 nd M1 use of " $\sum d$ " ÷ 24 must be a sum	[d	
	1st M1 for correct expression for \overline{x} 2nd M1 use of $\overline{d} = '\overline{x}' + 125$ A1 121 NB condone no labelling or incorrect label M1 correct expression $\sqrt{\frac{1306}{24}}$ A1 awrt 7.38 final answer	1^{st} M1 for correct expression for $\sum 2^{\text{nd}}$ M1 use of " $\sum d$ " ÷ 24 must be a sum	d clear it is th	
(c)	1st M1 for correct expression for \overline{x} 2nd M1 use of $\overline{d} = '\overline{x}' + 125$ A1 121 NB condone no labelling or incorrect label M1 correct expression $\sqrt{\frac{1306}{24}}$ A1 awrt 7.38 final answer	1 st M1 for correct expression for \sum 2 nd M1 use of " $\sum d$ " ÷ 24 must be a sum	d clear it is th	

Question Number	Scheme	Marks	
4. (a)	$\frac{2}{5}$	B1	
<i>a</i> .		(1)	
(b)	E(W) = 3 E(5-2W) = 5-2E(W)	B1 M1	
	E(X) = -1	A1	
		(3)	
(c)	$P(X < W) = P(5 - 2W < W) = P(W > \frac{5}{3}) \text{ or } P(W \ge 2)$	M1	
	$=\frac{4}{5}$	A1	
	3	(2)	
(d)(i)	$\begin{bmatrix} y \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \end{bmatrix}$		
		B1	
(ii)	$E(Y) = \frac{1}{5} \left(1 + \frac{1}{2} + \frac{1}{5} \right) \text{ or } \frac{1}{5} + \frac{1}{10} + \frac{1}{15} + \frac{1}{20} + \frac{1}{25} \left[= \frac{137}{300} = 0.4566 \right]$	M1	
		1V11	
	$E(Y^{2}) = \frac{1}{5} \left(1^{2} + \left(\frac{1}{2} \right)^{2} + \dots + \left(\frac{1}{5} \right)^{2} \right) \text{ or } \frac{1}{5} + \frac{1}{20} + \frac{1}{45} + \frac{1}{80} + \frac{1}{125} \left[= \frac{5269}{18000} = 0.2927.\dots \right]$	M1	
	$Var(Y) = '0.2927' - ('0.4566')^2$ awrt <u>0.0842</u>	M1 A1	
(a)	222	(5)	
(e)	$Var(2-3Y) = (-3)^2 Var(Y)$ awrt 0.758	M1 A1ft	
		(2)	
(a)	Notes B1 oe	[13]	
(b)			
	M1 use of $E(5-2W) = 5-2E(W)$ or $\frac{1}{5}(3+1++-5)$ Condone use of X instead of W		
(c)	A1 cao and labelled $E(X)$ M1 for identifying $W = \frac{5}{2} = \frac{1}{2} \cdot \frac{P(W = 1)}{2} = \frac{2}{2} \cdot \cdot \frac{P(W = 1)}{2} = \frac{P(W = 1)}{2$		
	M1 for identifying $W > \frac{5}{3}$ or $W \ge 2$ eg $1 - P(W = 1) \ge 2$ or $1 - P(W \le 1) \ge 2$		
(d)(i)	A1 oe B1 Correct distribution (probabilities may be implied by correct use). May be seen in any	y part	
(ii)	M1 attempt at expression for $E(Y)$ using their values of y and p (at least 2 terms seen) (0.45 if have 0.3 rather than 1/3) Condone incorrect labelling	or awrt 0.457	
	M1 attempt at expression for $E(Y^2)$ using their values of y and p (at least 2 terms seen) (0.2885 if have 0.3 rather than 1/3) Condone incorrect labelling	or awrt 0.293	
	M1 For use of " $E(Y^2)$ " – (" $E(Y)$ ") ² ft their values for $E(Y^2)$ and $E(Y)$		
	A1 awrt 0.0842 or $\frac{947}{11250}$		
(e)	M1 for use of $(-3)^2 \text{Var}(Y)$ with their $\text{Var}(Y) > 0$ condone $(3)^2 \text{Var}(Y)$		
	A1ft $\frac{947}{1250}$ or $9 \times$ "their part (d) > 0" evaluated correctly to 3sf or exact fraction		

Question Number	Scheme	Marks		
5. (a)	$P(X < 37) = P\left(Z < \frac{37 - 40}{2.4}\right) = P(Z < -1.25)$	M1		
	= 1 - 0.8944 ; = 0.105649 awrt 0.106	M1; A1 (3)		
(b)	P(one value is greater than 32) = $\sqrt{0.16}$ [=0.4]	M1		
	$\frac{32-m}{2.4} = 0.2533$	M1 B1		
	m = 31.392 awrt <u>31.4</u>	A1 (4)		
(c)	$P(Y<0) = P\left(Z < \frac{0-4}{8}\right) = P\left(Z < -0.5\right) [= 0.3085]$	M1		
	Let X be the number of negative values $P(X \ge 1) = 1 - P(X = 0)$ oe	M1		
	$= 1 - (0.6915)^5$	M1		
	= 0.84188 awrt 0.842	A1 (4)		
		(4) [11]		
(a)	Notes 1st M1 standardising 37 (or 43) with 40 and 2.4 (allow ±)			
(4)	2 nd M1 for $1-p$ (where $0.88) Implied by correct answer. A1 for awrt 0.106 (calc. 0.105649)$			
(b)	1 st M1 correct expression for one value > 32 (may be implied by sight of 0.2533 Allo between 0.25 and 0.26 inclusive)	w any value		
	2^{nd} M1 standardising 32 with m and 2.4 and setting equal to z value $0.2 < z < 0.3$			
	B1 for $z = \pm 0.2533$ or better (calc gives 0.2533470931) used in a linear equation for m awrt 31.4 or better			
	SC [using 0.16]Allow M0M1 B0 A0 for $\frac{32-m}{2.4} = z$ where $0.99 \le z < 1.04$			
(c)	2^{nd} M1 realising they need to find $1 - P(X = 0)$ ie writing or using $1 - P(\text{no negative values})$ oe May be implied by $1 - p^5$ 0			
	3 rd M1 use of $1-p^5$ where p is 1 -"their $P\left(Z < \frac{0-4}{8}\right)$ "			
	A1 awrt 0.842 (tables: 0.8418894 calculator: 0.84193233)			
	NB If they use Binomial			
	 and get 0.842 full marks. and get 0.125 then award M1M1M0A0 otherwise send to Review 			

Question Number		Scheme	Marks
6. (a)	$\overline{f} = 10.8 + 0.748 \overline{p} = 10.8 + 0.748(62.4)$	4) awrt <u>57.5</u>	M1 A1 (2)
(b)	For each additional <u>mark</u> scored on the <u>increases</u> by 0.748	pre-test, the average mark on the final exam	B1 (1)
(c)	The statement is not reliable as there is n	no data below 19 (extrapolation).	B1 (1)
(d)	76		B1 (1)
(e)	p < 10.8 + 0.748p		M1
	0.252 p < 10.8	p < awrt 42.9	M1 A1 (3)
(f)	[No change to] $S_{pp} = 15 573.76$	<u> </u>	
	$\sum pf = 133486 - 2842 + 9016$ [=139660]	$\sum pf$ increases by $98(92-29)[=6174]$	M1
	$\sum f = "57.47" \times 34 + (92 - 29) \text{ or}$ $\frac{133486 - 11648.35}{2120} \times 34 + (92 - 29)$ $[= 1954 + 92 - 29 \approx 2017]$	$\frac{\sum_{p} \sum_{f} f}{\text{increases by }} \frac{2120(92-29)}{34} = [= 3928.235]$	M1
	[=	S _{pf} increases by '6174' -'3928.235' [=2245.764]	dM1
	$b = \frac{"13894"}{15573.76} [= 0.89]$	$b = \frac{11648.35 + "2245.764"}{15573.76}$	M1
		awrt <u>0.9</u>	A1 (5)
		Notes	[13]
(a)	-	sion equation. Allow answer between 57 and 58	
(b)		o 0.748 Needs to refer to each mark being 0.748 or	
(c) (d) (e)	of eg 10 marks is 7.48 Allow equivalent words eg score/ point for mark, pre or test for pre-test, exam or final for final exam B1 Not reliable with correct supporting reason eg it (10.8)is an outlier, outside the range B1 76 cao 1st M1 for setting up inequality in <i>p</i> only or for drawing the line <i>f</i> = <i>p</i> on the graph. May be implied		
	by $p < n$ (ignore any lower limit	t) where $40 \le n \le 46$ (allow incorrect inequality sig	n or =)
	Allow trial and improvement.		
	2^{nd} M1 rearranging to the form $ap < b$ w	ith correct inequality sign. Allow $(1-0.748) p < 1$	0.8
		e any lower limit) where $42 < n < 44$	
(f)	1 st M1 Correct method to find new $\sum p$	f or change in $\sum pf$	
	 -	f or change in $\frac{\sum p \sum f}{n}$ Allow 2018 or 2017	
		narks being awarded. Correct method to find new S	pf with
	their changed $\sum pf$ and $\sum f$ or change	**	
		with their changed S_{pf} and unchanged S_{pp}	
	A1 awrt 0.9 (from correct working)		
,			

Question Number	Scheme	Marks	
7. (a)	$P(X=3) = F(3) - F(2) = \frac{1}{38}$	M1	
	$P(X=3) = \frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2}$	M1	
	$\frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2} = \frac{1}{38} \to n(n-1)(n-2) = 7980 $ (*)	M1 A1cso	
(b)	$21 \times 20 \times 19 = 7980$	B1cso (4)	
(b)	21\\ 20\\ 19 = 7900	(1)	
(c)	$a = F(0) = P(X=0) = \frac{14}{21} \times \frac{13}{20} \times \frac{12}{19}$	M1	
	$a = \frac{26}{95}$	A1	
	$P(X=1) \ \ 3 \times \frac{14}{21} \times \frac{13}{20} \times \frac{7}{19} \left[= \frac{91}{190} \right] \text{ or } P(X=2) \ \ 3 \times \frac{7}{21} \times \frac{6}{20} \times \frac{14}{19} \left[= \frac{21}{95} \right]$	M1 M1	
	$b = F(1) = P(X=0) + P(X=1) = \frac{26}{95} + \frac{91}{190} \text{ or } b = \frac{37}{38} - \frac{21}{95}$	dM1	
	$b = \frac{143}{190}$	A1	
		(6) [11]	
	Notes 1		
(a)	1 st M1 for use of F(3) – F(2) Accept $\frac{1}{38}$ 2 nd M1 product of 3 probabilities where the denominators are n , $(n-1)$ and $(n-2)$ and the numerators are decreasing k , $(k-1)$ and $(k-2)$ This may be seen as a single term in a longer expression. 3 rd M1 setting up equation for P($X=3$) = product of correct 3 probabilities without replacement A1cso fully correct solution with no errors seen		
(b)	B1cso correctly evaluated product. Allow 21(21 – 1)(21 – 2) =7980		
(c)	1 st M1 product of 3 probabilities for $P(X = 0)$ The three probabilities can be in any arrange implied by $\frac{26}{95}$ 1 st A1 $a = \frac{26}{95}$ oe must be clear this is the value for a	gement May	
	2^{nd} M1 product of 3 probabilities for P(X=1) or P (X=2) or $\frac{91}{190}$ or $\frac{91}{570}$ or $\frac{21}{95}$ or $\frac{7}{95}$	oe seen.	
	Condone incorrect labelling. The three probabilities can be in any arrangement 3^{rd} M1 \times 3 or adding the 3 sets of the 3 fractions or $\frac{91}{190}$ or $\frac{21}{95}$ Condone incorrect label	lling	
	190 95 4^{th} dM1 their $P(X=0)$ + their $P(X=1)$ or $F(2) - P(X=2)$ (dep on 2^{nd} M1 being scored)		
	$2^{\text{nd}} \text{ A1} b = \frac{143}{190} \text{ oe must be clear this is the value for } b$		
	NB if $a = 0.273$ and $b = 0.7526$ implies the method marks.		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom