Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level
In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P66652A
Publications Code WST01_01_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question Number	Scheme	Marks

\begin{tabular}{|c|c|c|}
\hline 3. (a) \& \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\begin{aligned}
\& \text { lower quartile }=116 \text { upper quartile }=125 \\
\& " 125 "+1.5 \times(" 125 "-" 116 ") \text { or } " 125 "+1.5 \times(9)
\end{aligned}
\] \\
Outlier is greater than 138.5 , so \(c=9^{*}\)
\end{tabular}} \& \begin{tabular}{l}
B1 \\
M1 \\
A1*cso
\end{tabular} \\
\hline \& \& (3) \\
\hline (b) \& \[
\begin{array}{l|ll}
\bar{x}=\frac{-96}{24}[=-4] \& \sum d=125 \times 24-96[=2904] \& \\
\bar{d}='^{\prime} \bar{x} '+125 \& \bar{d}=\frac{" 2904 "}{24} \& \bar{d}=121
\end{array}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
(3)
\end{tabular} \\
\hline (c) \& \[
\begin{aligned}
\& {\left[\sigma_{x}=\sigma_{d}\right]=\sqrt{\frac{1306}{24}}} \\
\& \quad\left\lceil\sigma_{d}\right\rceil=7.3767 \ldots \quad \text { awrt } \underline{7.38}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
(2)
\end{tabular} \\
\hline (d) \& \[
\begin{aligned}
{[\mathrm{P}(D>118 \mid X<0)] } \& =\frac{\mathrm{P}(118<D<125)}{\mathrm{P}(D<125)} \text { or } \frac{\mathrm{P}(-7<X<0)}{\mathrm{P}(X<0)} \text { or } \frac{5 / 24}{14 / 24} \\
\& =\frac{5}{14}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
(2)
[10]
\end{tabular} \\
\hline \& Notes \& \\
\hline (a)
(b)
(c)

(d) \& \begin{tabular}{l}
B1 both values correct. Both values must be seen either in the calculation or separately implied by the $\mathrm{IQR}=9$

M1 use of $\mathrm{Q}_{3}+1.5 \times \mathrm{IQR}$ with their values. May be implied by 138.5 if B 1 awarded A1 ${ }^{*}$ cso for $\mathbf{1 3 8 . 5}$ and conclusion $\boldsymbol{c}=\mathbf{9}$ (do not accept $c=139$) with no errors. Answer working must be shown.

$1^{\text {st }}$ M1 for correct expression for \bar{x}

$1^{\text {st }}$ M1 for correct expression for $\sum d$
$$
2^{\text {nd }} \text { M1 use of } \bar{d}=' \bar{x}++125
$$ $2^{\text {nd }}$ M1 use of " $\sum d$ " $\div 24$ must be c sum

A1 121

NB condone no labelling or incorrect labelling throughout part(b)

M1 correct expression $\sqrt{\frac{1306}{24}}$

A1 awrt 7.38 final answer

M1 correct probability statement (allow a probability of $\frac{k}{14}$ where $0<k<14$ to scor

A1 allow awrt 0.357

 \&

. They are not

is given so

lear it is their

M1)
\end{tabular}

\hline
\end{tabular}

Question Number	Scheme	Marks
5. (a)	$\begin{aligned} \mathrm{P}(X<37)=\mathrm{P}\left(Z<\frac{37-40}{2.4}\right) & =\mathrm{P}(Z<-1.25) \\ & =1-0.8944 \quad ;=0.105649 \ldots \quad \text { awrt } \underline{\mathbf{0 . 1 0 6}} \end{aligned}$	M1 M1; A1 (3)
(b)	$\mathrm{P}($ one value is greater than 32$)=\sqrt{0.16}[=0.4]$ $\frac{32-m}{2.4}=0.2533$	M1 M1 B1 A1
		4)
(c)	$\mathrm{P}(Y<0)=\mathrm{P}\left(Z<\frac{0-4}{8}\right)=\mathrm{P}(Z<-0.5)[=0.3085]$ Let X be the number of negative values $\begin{aligned} & \mathrm{P}(X \geqslant 1)=1-\mathrm{P}(X=0) \text { oe } \\ &=1-(0.6915)^{5} \\ &=0.84188 \ldots \end{aligned}$	M1 M1 M1 A1 (4) [11]
	Notes	
(a)	$1^{\text {st }}$ M1 standardising 37 (or 43) with 40 and 2.4 (allow \pm) $2^{\text {nd }}$ M1 for $1-p$ (where $0.88<p<0.90$) Implied by correct answer. A1 for awrt 0.106 (calc. $0.105649 \ldots .$.)	
(b)	$1^{\text {st }}$ M1 correct expression for one value >32 (may be implied by sight of 0.2533 .. between 0.25 and 0.26 inclusive) $2^{\text {nd }}$ M1 standardising 32 with m and 2.4 and setting equal to z value $0.2<\|z\|<0$ B1 for $z= \pm 0.2533$ or better (calc gives $0.2533470931 \ldots$. .) used in a linear eq A1 awrt 31.4 or better SC [using 0.16]Allow M0M1 B0 A0 for $\frac{32-m}{2.4}=z$ where $0.99 \leqslant\|z\|<1.04$	any value for m
(c)	$1^{\text {st }}$ M1 standardising 0 with 4 and 8 (allow \pm) or seeing 0.3085 or 0.6915 $2^{\text {nd }} \mathrm{M} 1$ realising they need to find $1-\mathrm{P}(X=0)$ ie writing or using $1-\mathrm{P}($ no negativ May be implied by $1-p^{5} \quad 0<p<1$ $3^{\text {rd }}$ M1 use of $1-p^{5}$ where p is $1-$ "their $\mathrm{P}\left(Z<\frac{0-4}{8}\right)$ " A1 awrt 0.842 (tables: $0.8418894 \ldots$ calculator: $0.84193233 \ldots$...) NB If they use Binomial - and get 0.842 full marks. - and get 0.125 then award M1M1M0A0 - otherwise send to Review	s) oe

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& \multicolumn{2}{|r|}{Scheme} \& Marks

\hline 6. (a) \& \multicolumn{2}{|l|}{$\bar{f}=10.8+0.748 \bar{p}=10.8+0.748(62.4) \quad$ awrt $\underline{57.5}$} \& M1 A1

\hline (b) \& \multicolumn{2}{|l|}{For each additional mark scored on the pre-test, the average mark on the final exam increases by 0.748} \& B1 (1)

\hline (c) \& \multicolumn{2}{|l|}{The statement is not reliable as there is no data below 19 (extrapolation).} \& B1 (1)

\hline (d) \& \multicolumn{2}{|l|}{76} \& B1 (1)

\hline (e) \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& p<10.8+0.748 p \\
& 0.252 p<10.8
\end{aligned}
$$} \& $$
\begin{aligned}
& \text { M1 } \\
& \text { M1 }
\end{aligned}
$$

\hline \multirow[t]{6}{*}{(f)} \& \multicolumn{2}{|l|}{[No change to] $\mathrm{S}_{p p}=15573.76$} \& \multirow[b]{2}{*}{M1}

\hline \& $$
\begin{array}{r}
\sum p f=133486-2842+9016 \\
{[=139660]}
\end{array}
$$ \& $\sum p f$ increases by $98(92-29)[=6174]$ \&

\hline \& $$
\begin{array}{|c}
\hline \sum f=" 57.47 " \times 34+(92-29) \text { or } \\
\frac{133486-11648.35}{2120} \times 34+(92-29) \\
{[=1954+92-29 \approx 2017]} \\
\hline
\end{array}
$$ \& $$
\begin{array}{r}
\frac{\sum_{p} \sum^{n} f}{n} \text { increases by } \frac{2120(92-29)}{34} \\
{[=3928.235 \ldots]}
\end{array}
$$ \& M1

\hline \& $$
\begin{aligned}
& \mathrm{S}_{p f}=" 139660 "-\frac{2120 \times " 2017 "}{34} \\
& 13894 \ldots]
\end{aligned}
$$ \& $$
\begin{array}{r}
\mathrm{S}_{p f} \text { increases by ‘6174’ - } 3928.235 \text { ’ } \\
{[=2245.764 \ldots]}
\end{array}
$$ \& dM1

\hline \& $b=\frac{\text { "13894..." }}{15573.76} \quad[=0.89 \ldots]$ \& $b=\frac{11648.35+\text { "2245.764" }}{15573.76}$ \& M1

\hline \& \& awrt 0.9 \& A1 (5)

\hline \& \& Notes \& [13]

\hline (a)
(b)
(c)
(d)
(e)

(f) \& \begin{tabular}{l}
M1 for substituting 62.4 into the regre

A1 awrt 57.5

B1 must include context and reference of eg 10 marks is 7.48 Allow equi exam or final for final exam

B1 Not reliable with correct supportin B1 76 cao

$1^{\text {st }} \mathrm{M} 1$ for setting up inequality in p on

by $p<n$ (ignore any lower lim

Allow trial and improvement.

$2^{\text {nd }} \mathrm{M} 1$ rearranging to the form $a p<b$

May be implied by $p<n$ (igno

A1 $p<$ awrt 42.9 (ignore any lower li

$1^{\text {st }}$ M1 Correct method to find new \sum

$2^{\text {nd }}$ M1 Correct method to find new

$3^{\text {rd }}$ dM1 dep on both previous method their changed $\sum p f$ and $\sum f$ or chan

$4^{\text {th }}$ M1 expression for $b=\frac{\mathrm{S}_{p f}{ }^{\prime}}{15573.76}$

A1 awrt 0.9 (from correct working)

 \&

sion equation. Allow answer between 57 and 58

to 0.748 Needs to refer to each mark being 0.748 or alent words eg score/ point for mark, pre or test for reason eg it (10.8)is an outlier, outside the range y or for drawing the line $f=p$ on the graph. May be t) where $40 \leqslant n<46$ (allow incorrect inequality sig

with correct inequality sign. Allow $(1-0.748) p<1$ e any lower limit) where $42<n<44$

it) ISW

$p f$ or change in $\sum p f$

f or change in $\frac{\sum_{p} \sum_{n} f}{n}$ Allow 2018 or 2017

marks being awarded. Correct method to find new S e in $\mathrm{S}_{p f}$

with their changed $\mathrm{S}_{p f}$ and unchanged $\mathrm{S}_{p p}$

 \&

a multiple pre-test,

implied or $=$)

0.8

pf with
\end{tabular}

\hline
\end{tabular}

Question Number	Scheme ${ }^{\text {a }}$ (Marks
7. (a)	$\begin{align*} & \mathrm{P}(X=3)=\mathrm{F}(3)-\mathrm{F}(2)=\frac{1}{38} \\ & \mathrm{P}(X=3)=\frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2} \\ & \quad \frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2}=\frac{1}{38} \rightarrow n(n-1)(n-2)=7980 \tag{*} \end{align*}$
(b)	$21 \times 20 \times 19=7980$ B1cso
(c)	
	Notes
(a) (b) (c)	$1^{\text {st }} \mathrm{M} 1$ for use of $\mathrm{F}(3)-\mathrm{F}(2)$ Accept $\frac{1}{38}$ $2^{\text {nd }} \mathrm{M} 1$ product of 3 probabilities where the denominators are $n,(n-1)$ and $(n-2)$ and the numerators are decreasing $k,(k-1)$ and $(k-2)$ This may be seen as a single term in a longer expression. $3^{\text {rd }}$ M1 setting up equation for $\mathrm{P}(X=3)=$ product of correct 3 probabilities without replacement A1cso fully correct solution with no errors seen B1cso correctly evaluated product. Allow $21(21-1)(21-2)=7980$ $1^{\text {st }}$ M1 product of 3 probabilities for $\mathrm{P}(X=0)$ The three probabilities can be in any arrangement May be implied by $\frac{26}{95}$ $1^{\text {st }} \mathrm{A} 1 a=\frac{26}{95}$ oe must be clear this is the value for a $2^{\text {nd }} \mathrm{M} 1 \quad$ product of 3 probabilities for $\mathrm{P}(X=1)$ or $\mathrm{P}(X=2)$ or $\frac{91}{190}$ or $\frac{91}{570}$ or $\frac{21}{95}$ or $\frac{7}{95}$ oe seen. Condone incorrect labelling. The three probabilities can be in any arrangement $3^{\text {rd }} \mathrm{M} 1 \times 3$ or adding the 3 sets of the 3 fractions or $\frac{91}{190}$ or $\frac{21}{95}$ Condone incorrect labelling $4^{\text {th }} \mathrm{dM} 1$ their $\mathrm{P}(X=0)+$ their $\mathrm{P}(X=1)$ or $\mathrm{F}(2)-\mathrm{P}(X=2)$ (dep on $2^{\text {nd }} \mathrm{M} 1$ being scored) $2^{\text {nd }}$ A1 $b=\frac{143}{190}$ oe must be clear this is the value for b NB if $a=0.273 \ldots$ and $b=0.7526$ implies the method marks.

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

